2022 Consumer Confidence Report

Water System Name: MOREHEAD PARK

Report Date:

March 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info will be available at a later date, please see the [Discussion of Vulnerability] located in the [Drinking Water Source Assessment Information] section at the end of this report for more details.

Your water comes from 1 source(s): WELL #3

Opportunities for public participation in decisions that affect drinking water quality: Morehead Park Water System does not schedule public meetings, however public comment is welcomed either in written format to be delivered to our office at 24221 S. Chrisman Road, Tracy, CA 95304, through email to Jeffrey Roe jefroe82781@yahoo.com, by phone (415)464-0691, or www.moreheadpark.com

For more information about this report, or any questions relating to your drinking water, please call (415) 464 - 0691 and ask for Jeffrey Roe.

TERMS U	SED IN THIS REPORT
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
water.	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
Maximum Contaminant Level Goal (MCLG): The	5
level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
	Level 1 Assessment: A Level 1 assessment is a study of the water
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water.	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple
I here is convincing evidence that addition of a disinfectant is necessary for control of microbial	occasions.
contaminants.	mg/L: milligrams per liter or parts per million (ppm)
Maximum Residual Disinfectant Level Goal	ug/L: micrograms per liter or parts per billion (ppb)
below which there is no known or expected risk to health MPDLCs do not reflect the benefits of the use of	pCi/L: picocuries per liter (a measure of radiation)
disinfectants to control microbial contaminants.	umhos/cm: micro mhos per centimeter
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA										
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant					
Total Coliform Bacteria	4/year (2022)	2	no more than 1 positive monthly sample	0	Naturally present in the environment.					

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2022)	127	n/a	none	none	Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2022)	290	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Table 3 - I	Table 3 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Arsenic (ug/L)	(2022)	2	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes					
Chromium (ug/L)	(2022)	12	n/a	50.0	n/a	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits					

Fluoride (mg/L)	(2022)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2022)	2.1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2022)	2.1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2020)	2.58	n/a	15	(0)	Erosion of natural deposits.

Table 4 - DETE	Table 4 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected Range of Detected		MCL	PHG (MCLG)	Typical Sources of Contaminant					
Chloride (mg/L)	(2022)	118	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence					
Specific Conductance (umhos/cm)	(2022)	1280	n/a	1600	n/a	Substances that form ions when in water; seawater influence					
Sulfate (mg/L)	(2022)	278	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes					
Total Dissolved Solids (mg/L)	(2022)	770	n/a	1000	n/a	Runoff/leaching from natural deposits					

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Boron (mg/L)	(2022)	1.2	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.						
Vanadium (ug/L)	(2022)	8	n/a	50	Vanadium exposures resulted in developmental and reproductive effects in rats.						

	Table 6 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2022)	60	n/a	n/a	n/a							
Magnesium (mg/L)	(2022)	34	n/a	n/a	n/a							
pH (units)	(2022)	7.9	n/a	n/a	n/a							
Alkalinity (mg/L)	(2022)	120	n/a	n/a	n/a							
Aggressiveness Index	(2022)	12.2	n/a	n/a	n/a							
Langelier Index	(2022)	0.3	n/a	n/a	n/a							

Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant		
Chlorine (mg/L)	(2022)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.		

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some

contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Morehead Park WS* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION O	OF A MCL,MRDL,AL,TT, OR	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s). [INSERT NUMBER OF LEVEL 1 ASSESSMENTS] Level 1 assessment(s) were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.

During the past year [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were required to be completed for our water system. [INSERT NUMBER OF LEVEL 2 ASSESSMENTS] Level 2 assessments were completed. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

We were required to complete a Level 2 assessment because we found E. coli in our water system. In addition, we were required to take [INSERT NUMBER OF CORRECTIVE ACTIONS] corrective actions and we completed [INSERT NUMBER OF CORRECTIVE ACTIONS] of these actions.

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment has not yet been conducted for WELL 03 of the MOREHEAD PARK water system.

WELL #3 - info will become available at a later date, please see the [Discussion of Vulnerability] below for more details.

Discussion of Vulnerability

In light of the recent economical changes, Cities and Counties all over have had to dramatically reduced their staff of employees. As a result San Joaquin County has become understaffed and severely backlogged, therefore neither a completion date of the assessment nor the information it will contain is available at this time.

Acquiring Information

Upon completion of the Source Assessment for WELL 03 of the MOREHEAD PARK water system, you may either view a copy of the complete assessment by visiting the designated location specified on the assessment or you may request a copy of the Assessment Summary page be sent to you from the designated contact specified on the assessment.

For questions regarding Source Water Assessments you may refer to the following links:

- Frequently Asked Questions: http://www.cdph.ca.gov/certlic/drinkingwater/Documents/DWSAPGuidance/FAQ.pdf
- General info page: http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DWSAP.aspx

Morehead Park WS Analytical Results By FGL - 2022

		MICROB	IOLOGIC	AL CONTAN	IINANT	S			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			2	1 - 1
Space #104 H/B	STK2251263-1					2022-08-10	<1.0		
Space 104 Sample Tap	STK2251263-2					2022-08-10	<1.0		
Tap @ Space #1	STK2251125-2					2022-08-08	<1.0		
Tap @ Space #1	STK2238519-2					2022-06-17	<1.0		
Tap @ Space #104	STK2257012-1					2022-12-01	Absent		
Tap @ Space #104	STK2255918-1					2022-11-07	Absent		
Tap @ Space #104	STK2254184-1					2022-10-05	Absent		
Tap @ Space #104	STK2252606-1					2022-09-07	Absent		
Tap @ Space #104	STK2251125-1					2022-08-08	1		
Tap @ Space #104	STK2250992-1					2022-08-04	Present		
Tap @ Space #104	STK2239728-1					2022-07-12	Absent		
Tap @ Space #104	STK2238519-1					2022-06-17	>200.5		
Tap @ Space #104	STK2238514-1					2022-06-16	Present		
Tap @ Space #104	STK2236052-1					2022-05-03	Absent		
Tap @ Space #104	STK2234733-1					2022-04-07	Absent		
Tap @ Space #104	STK2232917-1					2022-03-01	Absent		
Tap @ Space #104	STK2231558-1					2022-02-03	Absent		
Tap @ Space #104	STK2230080-1					2022-01-03	Absent		
Tap @ Space #76	STK2251125-3					2022-08-08	<1.0		
Tap @ Space #76	STK2238519-3					2022-06-17	<1.0		
Tap @ Wellhead #3	STK2251125-4					2022-08-08	<1.0		

SAMPLING RESULTS FOR SODIUM AND HARDNESS										
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			127	127 - 127	
WELL #3	STK2238515-1	mg/L				2022-06-16	127			
Hardness		mg/L		none	none			290	290 - 290	
WELL #3	STK2238515-1	mg/L				2022-06-16	290			

PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Arsenic		ug/L		10	0.004			2	2 - 2		
WELL #3	STK2238515-1	ug/L				2022-06-16	2				
Chromium		ug/L	100	50.0	n/a			12	12 - 12		
WELL #3	STK2238515-1	ug/L				2022-06-16	12				
Fluoride		mg/L		2	1			0.1	0.1 - 0.1		
WELL #3	STK2238515-1	mg/L				2022-06-16	0.1				
Nitrate as N		mg/L		10	10			2.1	2.1 - 2.1		
WELL #3	STK2238515-1	mg/L				2022-06-16	2.1				
Nitrate + Nitrite as N		mg/L		10	10			2.1	2.1 - 2.1		
WELL #3	STK2238515-1	mg/L				2022-06-16	2.1				
Gross Alpha		pCi/L		15	(0)			2.58	2.58 - 2.58		
WELL #3	STK2038202-1	pCi/L				2020-06-10	2.58				

SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chloride		mg/L		500	n/a			118	118 - 118		
WELL #3	STK2238515-1	mg/L				2022-06-16	118				
Specific Conductance		umhos/cm		1600	n/a			1280	1280 - 1280		

WELL #3	STK2238515-1	umhos/cm			2022-06-16	1280		
Sulfate		mg/L	500	n/a			278	278 - 278
WELL #3	STK2238515-1	mg/L			2022-06-16	278		
Total Dissolved Solids		mg/L	1000	n/a			770	770 - 770
WELL #3	STK2238515-1	mg/L			2022-06-16	770		

UNREGULATED CONTAMINANTS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Boron		mg/L		NS	n/a			1.2	1.2 - 1.2		
WELL #3	STK2238515-1	mg/L				2022-06-16	1.2				
Vanadium		ug/L		NS	n/a			8	8 - 8		
WELL #3	STK2238515-1	ug/L				2022-06-16	8				

ADDITIONAL DETECTIONS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Calcium		mg/L			n/a			60	60 - 60		
WELL #3	STK2238515-1	mg/L				2022-06-16	60				
Magnesium		mg/L			n/a			34	34 - 34		
WELL #3	STK2238515-1	mg/L				2022-06-16	34				
pH		units			n/a			7.9	7.9 - 7.9		
WELL #3	STK2238515-1	units				2022-06-16	7.9				
Alkalinity		mg/L			n/a			120	120 - 120		
WELL #3	STK2238515-1	mg/L				2022-06-16	120				
Aggressiveness Index					n/a			12.2	12.2 - 12.2		
WELL #3	STK2238515-1					2022-06-16	12.2				
Langelier Index					n/a			0.3	0.3 - 0.3		
WELL #3	STK2238515-1					2022-06-16	0.3				

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chlorine		mg/L		4.0	4.0			0.00	-	
Tap @ Wellhead #3	STK2251125-4	mg/L				2022-08-08				
Average Tap @ Wellhead #3								0		
WELL #3	STK2238519-4	mg/L				2022-06-17				
Average WELL #3								0		

Morehead Park WS CCR Login Linkage - 2022

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
Space #103	STK2138782-5	2021-06-18	Metals, Total	Space #103	Copper & Lead Monitoring
Space #104 H/B	STK2251263-1	2022-08-10	Coliform	Space #104 H/B	Bacteriological Sampling
Space #28	STK2138782-2	2021-06-17	Metals, Total	Space #28	Copper & Lead Monitoring
Space #45	STK2138782-3	2021-06-17	Metals, Total	Space #45	Copper & Lead Monitoring
Space #80	STK2138782-4	2021-06-19	Metals, Total	Space #80	Copper & Lead Monitoring
Space #9	STK2138782-1	2021-06-16	Metals, Total	Space #9	Copper & Lead Monitoring
Space 104 Sampl	STK2251263-2	2022-08-10	Coliform	Space 104 Sample Tap	Bacteriological Sampling
Bacti-Rpt-ss02	STK2238519-2	2022-06-17	Coliform	Tap @ Space #1	Repeat Bacteriological Monitoring
	STK2251125-2	2022-08-08	Coliform	Tap @ Space #1	Repeat Bacteriological Monitoring
Bacti-Rout-ss01	STK2230080-1	2022-01-03	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2231558-1	2022-02-03	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2232917-1	2022-03-01	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2234733-1	2022-04-07	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2236052-1	2022-05-03	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2238514-1	2022-06-16	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2238519-1	2022-06-17	Coliform	Tap @ Space #104	Routine Bacteriological Monitoring
	STK2239728-1	2022-07-12	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2250992-1	2022-08-04	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2251125-1	2022-08-08	Coliform	Tap @ Space #104	Routine Bacteriological Monitoring
	STK2252606-1	2022-09-07	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2254184-1	2022-10-05	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2255918-1	2022-11-07	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
	STK2257012-1	2022-12-01	Coliform	Tap @ Space #104	Routine Bacteriological Sampling
Bacti-Rpt-ss03	STK2238519-3	2022-06-17	Coliform	Tap @ Space #76	Repeat Bacteriological Monitoring
	STK2251125-3	2022-08-08	Coliform	Tap @ Space #76	Repeat Bacteriological Monitoring
Bacti-Rpt-ss04	STK2251125-4	2022-08-08	Coliform	Tap @ Wellhead #3	Repeat Bacteriological Monitoring
	STK2251125-4	2022-08-08	Field Test	Tap @ Wellhead #3	Repeat Bacteriological Monitoring
WELL 03	STK2038202-1	2020-06-10	Radio Chemistry	WELL #3	Well 3 Radio Monitoring
WELL #3	STK2238515-1	2022-06-16	Metals, Total	WELL #3	Well 3 Chemical Monitoring
	STK2238515-1	2022-06-16	General Mineral	WELL #3	Well 3 Chemical Monitoring
WELL 03	STK2238519-4	2022-06-17	Field Test	WELL #3	MOREHEAD PARK